Search Space Features Underlying the Performance of Stochastic Local Search Algorithms for MAX-SAT

نویسندگان

  • Holger H. Hoos
  • Kevin Smyth
  • Thomas Stützle
چکیده

MAX-SAT is a well-known optimisation problem that can be seen as a generalisation of the propositional satisfiability problem. In this study, we investigate how the performance of stochastic local search (SLS) algorithms — a large and prominent class of algorithms that includes, for example, Tabu Search, Evolutionary Algorithms and Simulated Annealing — depends on features of the underlying search space. We show that two well-known measures of search space structure, the autocorrelation length of random walks and the so-called fitness distance correlation, reflect complementary factors underlying instance hardness for high-performance SLS algorithms. While the autocorrelation measure is computationally cheap, the fitness distance correlation serves mainly as an a posteriori measure for explaining performance. We also study the dependence of SLS performance on features of the distribution of clause weights for individual instances and show that, depending on the variance of the clause weight distribution, different search strategies seem to be suited best for dealing with the structure of the respective search spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Relative Merits of Simple Local Search Methods for the MAX-SAT Problem

Algorithms based on local search are popular for solving many optimization problems including the maximum satisfiability problem (MAXSAT). With regard to MAXSAT, the state of the art in performance for universal (i.e. non specialized solvers) seems to be variants of Simulated Annealing (SA) and MaxWalkSat (MWS), stochastic local search methods. Local search methods are conceptually simple, and ...

متن کامل

A Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms

In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching s...

متن کامل

Training Radial Basis Function Neural Network using Stochastic Fractal Search Algorithm to Classify Sonar Dataset

Radial Basis Function Neural Networks (RBF NNs) are one of the most applicable NNs in the classification of real targets. Despite the use of recursive methods and gradient descent for training RBF NNs, classification improper accuracy, failing to local minimum and low-convergence speed are defects of this type of network. In order to overcome these defects, heuristic and meta-heuristic algorith...

متن کامل

Iterated Robust Tabu Search for MAX-SAT

MAX-SAT, the optimisation variant of the satisfiability problem in propositional logic, is an important and widely studied combinatorial optimisation problem with applications in AI and other areas of computing science. In this paper, we present a new stochastic local search (SLS) algorithm for MAXSAT that combines Iterated Local Search and Tabu Search, two well-known SLS methods that have been...

متن کامل

SAT-Encodings, Search Space Structure, and Local Search Performance

Stochastic local search (SLS) algorithms for prepositional satisfiability testing (SAT) have become popular and powerful tools for solving suitably encoded hard combinatorial from different domains like, e.g., planning. Consequently, there is a considerable interest in finding SAT-encodings which facilitate the efficient application of SLS algorithms. In this work, we study how two encodings sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004